Beyaz ışık kırıldığı zaman çeşitli renklere ayrılır. Bu olayın nedenini 1666’da ünlü İngiliz bilim adamı Isaac Newton açıklamıştır.Newton bir Güneş ışını demetini karanlık bir odada bir prizmadan geçirdiğinde, bildiğimiz beyaz ışık cam prizmanın öbür yüzünden çıkarken mor, lacivert, mavi, yeşil, sarı, turuncu ve kırmızı renkli ışınlara ayrılmıştı. Bu renkli ışın demetlerine TAYF denir. Yine Newton’ un deneylerine göre bu ışık tayfı tersine çevrilmiş ikinci bir prizmadan geçirildiğinde yeniden beyaz ışık demetine dönüşüyordu. Ama tayftaki renklerden yalnızca biri, örneğin kırmızı prizmadan geçirildiğinde hiçbir değişikliğe uğramıyordu.
Bu deneyde beyaz ışığın bileşenlerine ayrılmasının sebebi, yapısındaki her rengin değişik açılarda kırılmasıdır. Işık kırıcılık katsayıları farklı olan saydam bir maddeden (hava) bir başka saydam ortama (cam) geçtiği zaman kırılır. Kırılma miktarı ışığın dalga boyuna bağlıdır. Dalga boyu ne kadar kısa ise kırılma da o kadar büyük açı ile olur. Örneğin mavi ışınlar kırmızı ışınlara göre daha büyük bir açıda kırılır çünkü mavi ışığın dalga boyu kırmızınınkine göre çok daha küçüktür. Gökkuşağı da bu yolla oluşur. Havadaki her bir yağmur damlaları prizma görevi görerek ışığı bileşen renklerine ayrıştırır.
Günümüzde radyo dalgalarından ısıya, görünür ışıktan morötesi, X ve kozmik ışınlara kadar bütün ışıma enerjisi birimlerinin elektromanyetik yapıda olduğu biliniyor. Örneğin ışık ile radyo dalgaları arasındaki tek fark dalga boylarıdır.
Buradan yola çıkarak elektromanyetik tayfın tanımını yapabiliriz:
ELEKTROMANYETİK TAYF ( SPEKTRUM ) GAMA IŞINLARINDAN RADYO DALGALARINA KADAR BİLİNEN TÜM ELEKTROMANYETİK DALGALARI İÇEREN DİZİLİMDİR.
Görünür ışık tayfı, en uzun radyo dalgalarından en kısa dalga boylu gamma ışınlarına kadar uzanan elektromanyetik tayfın bütünü içinde çok küçük bir aralığı kapsar.
Tayfın dalga boylarına göre dizilen bileşenleri şunlardır:
Gamma ışınları: 0,01 nanometreden daha küçük dalga boylu ışınlardır. Bir atom çekirdeğinin çapından daha küçük dalga boylu dalgalar içerirler. Bu elektromanyetik tayfın en yüksek enerjili ve frekanslı bölgesidir. Pulsarlar, kara delikler ve kuazarlar gibi cisimlerde meydana gelen şiddetli nükleer tepkimeler sonucu oluşurlar. Ayrıca süpernova patlamalarında ve karadeliklerin etrafını çevreleyen madde diskinden karadeliğin olay ufkundan içine düşen maddenin aşırı ısınması sonucu da oluşurlar.
X ışınları: 0.01 ile 10 nanometre arasında dalga boyuna sahip ışınlardır (bir atomun boyu kadar). Alman fizikçi Wilhelm Conrad ROENTGEN tarafından keşfedilmişlerdir. Sınıflandırmada nereye ait olduklarını bilmediği için onlara X-Işınları adını vermiştir. Kaynaklar: lambalar, x ısını tüpleri ve metal bir hedefe çarpan hızlı elektronlardır. X ısınları yumuşak maddelerin içine nüfuz ederler.
Morötesi (UV) radyasyon: 10 ile 310 nanometre arasında dalga boyuna sahip ışınlardır (yaklaşık olarak bir virüs boyutunda). Genç, sıcak yıldızlar bol miktarda morötesi ışık üretirler ve yıldızlararası uzayı bu yüksek enerjili ışınlarla yıkarlar. Kaynaklar; lambalar, gaz deşarjları ve de yıldızlardır. A, B ve C olmak üzere üç kısımda incelenirler. Kısa dalga boylu morötesi ışınlar zararlı olabilirler.2650 A0 dalgaboyu gözlere zararlı, o yüzden UV koruyucu gözlükler özellikle bu dalga boyundaki UV ışınlarını keser.
Görünür ışık: 400 ile 700 nanometre dalga boyları arasındaki ışınları kapsar (bir molekül ile tek hücreli arası boydadırlar). Işık diye hitap edilen elektromanyetik spektrumun bu küçük bölümünü insan görebilir. Güneş yeryüzü ışığının % 99,999’ unu sağlar. Bu bölümde mor ile başlayan ve kırmızıyla biten renkler vardır.
Kızılötesi (IR) radyasyon: 710 nanometreden 1 milimetre arası dalga boylarına sahip ışınları kapsar (iğne ucu ile küçük bir tohum kadar boyları vardır). Bütün sıcak ve soğuk maddeler tarafından oluşturulurlar. Atomlar tarafından emildiklerinde maddeyi ısıtırlar, onun için de ısı radyasyonu da denir. 370C sıcaklığa sahip olan vücudumuz 900 nanometrelik kızılötesi ışıma yapar.
Mikrodalga radyasyonu: 1 mm ile 1 metre arası dalga boylarına sahip ışınları kapsar. Radarlarda kullanılan çok kısa dalga boyuna sahip radyo dalgalarıdır. Aynı zamanda mikrodalga fırınlarda ve kablo gerektirmeyen uzak mesafe iletişimlerde kullanılır.
Radyo dalgaları: 1 milimetreden uzun dalgalardır. En uzun dalga boyuna sahip olduklarından en düşük enerjiye ve sıcaklığa da sahipler(f=10000-1 trilyon’dur en düşük frekansa bağlı olmasına rağmen). Radyo dalgaları her yerde bulunabilir: Arka alan ışınımında, yıldızlararası gaz ve toz bulutlarında ve süpernova patlamalarının soğuk kalıntılarında. Bunların kaynakları elektrik titreşimleridir. Telefon, televizyon ve radyoda bağlantı kablosu gerektirmeden kullanılır.
Fotonun bölgesi Dalga boyu Frekans (Hz) Foton Enerjisi
Radyo Dalgası 1km 3x105 1 neV
Mikrodalga 1 cm 3x1010 120 μeV
Kızılötesi 10 μm 3x1013 120 meV
Görünür 550 nm 5x1014 2 eV
Ültraviyole 100 nm 3x1015 12 eV
X-ışını 0.05 nm 6x1018 25 keV
Gama ışını 0.00005 nm 6x1021 25 MeV
Dalga ile ilgili genel tanımlar
Durgun yüzeye sahip bir göle bir taş attığımızı varsayalım. Taşın suya çarpması ile birlikte göl yüzeyinde bir takım su kabarmaları ve bunların da arasında çöküntüler görülecektir. İşte su yüzeyindeki bu düzenli kabarma ve çalkantılara DALGA denir. Dalgalar bütün katı, sıvı ve gazlarda görülebilir, ör. hava, su, toprak,
Dalga boyu ile frekans arasındaki ilişki şöyle gösterilebilir:
V=λ ƒ
V= hız
λ=dalga boyu
ƒ= frekans
Elektromanyetik radyasyon için hız, ışığın hızına (C) eşittir.
C=λ ƒ
C= ışık hızı
λ=dalga boyu
ƒ= frekans
Frekans, dalga boyu ve enerji arasındaki ilişki nedir ?
Bir dalganın enerjisi frekansı ile doğru, dalga boyu ile de ters orantılıdır. Diğer bir deyişle enerji ne kadar büyük ise frekans o ölçüde büyük, dalga boyu ise yine o ölçüde küçüktür (kısadır).
Fotonların Enerjisi
1900 yılında Max Planck isimli bilim adamı bir sabit sayı keşfetti. Bu sayı ‘Planck Sabiti (h)’ olarak isimlendirildi. Bunun ardından birçok yeni fikirler üretilmeye başlandı. Planck, ışığı enerji paketçikleri olarak tanımladı ve bu paketçiklerin her birinin enerjisini şu şekilde tanımladı:
E= h f
Burada 'f ' ışığın frekansı ve 'h' ise Planck sabitidir. Planck sabitinin değerleri aşağıda belirtildiği gibidir. Bunların hepsi birbirinin aynısıdır, aralarındaki tek fark birimlerdir:
h = 6,63 x 10-34 J.s (Joule x Saniye) = 4,14 x 10-15 eV.s (Elektron volt x Saniye) = 1,58 x 10-34 cal.s (Kalori x Saniye)
Örneğin; eğer 1000 nm dalga boyundaki bir kızıl ötesi fotonunun ne kadar enerji taşıdığını bulmak istiyorsak; yapacağımız tek hamle: f=c /λ formülünden yararlanarak frekansı hesaplamak ve sonra da yukarıdaki formülü uygulamaktır: E=hf= (4,14 x 10-15 eV.s)(3x1014Hz)=1.242eV
Kaynaklar:
Yıldız Astro Fiziğine Giriş Cilt 1
Astronomi ve Astrofizik Ders Kitabı
Erkan Yücel ‘’Işık,Renk ve Elektromanyetik Tayf’’ Ders Notları
Prof.Dr.Halil Kırbıyık’’Babillerden Günümüze Kozmoloji’’
Prof.Dr.Umur Daybelge’’Uzay Blimi’’
Hazırlayan: İsrafil ŞENYİĞİT
Hiç yorum yok:
Yorum Gönder